PROGETTO ESECUTIVO

PR FESR 2021 - 2027

BANDO PR FESR 2021-2027 - INTERVENTI DI RIQUALIFICAZIONE ENERGETICA E MIGLIORAMENTO/ ADEGUAMENTO SISMICO DEGLI EDIFICI PUBBLICI OBIETTIVO SPECIFICO 2 - AZIONI 2.1.1-2.2.1-2.4.1) BANDO 2022

ASILO NIDO MAGICA BULA - GARIGA DI PODENZANO

CUP: J64D23000570006

Committente:

visto ed approvato:

COMUNE DI PODENZANO

Via Monte Grappa n. 100 , 29027 Podenzano (PC)

Progetto e D.L.:

STUDIO TECNICO

Dott. Ing. Silvio Carini

Via Antonio Trivioli n.7 - 29122 Piacenza Tel./Fax: 0523-711319 - mobile: 333-2895211 e-mail: ing.silviocarini@gmail.com p.e.c. silvio.carini@ingpec.eu il Tecnico:

Dott. Ing. Silvio Carini

Oggetto elaborato:

Fase

Tipo

Elaborato

INTERVENTO STRUTTURALE RELAZIONE SUI MATERIALI

ESE.

TAV.

1.2.2

REV.	DATA	DESCRIZIONE
00	20 / 04 / 2023	EMESSO PER APPROVAZIONE
01	18 / 07 / 2023	EMESSO PER INTEGRAZIONE RIF. RICHIESTA 25298 DELL'11-07-2023
02	18 / 01 / 2024	EMESSO PER NULLA OSTA SOPRINTENDENZA
03	19 / 02 / 2024	EMESSO PER APPROVAZIONE STAZIONE APPALTANTE

redatto: Ing. Carini controllato: Ing. Carini

Materiali

Le proprietà di progetto dei materiali sono state definite a partire dalle schede tecniche degli stessi e nel rispetto di quanto disposto nel D.M. 17/01/2018,capitoli 4,7 ed11.

Di seguito si riportano le caratteristiche meccaniche dei materiali impiegati per la realizzazione degli elementi strutturali.

I. Riscontri delle prime indagini diagnostiche e definizione del livello di conoscenza

La conoscenza di un edificio esistente risente di questi aspetti fondamentali:

- il "progetto" (o meglio la costruzione) riflette lo stato delle conoscenze (regola d'arte) al tempo della loro edificazione e può contenere difetti di impostazione concettuale e di realizzazione che non sono direttamente visibili o evidenziabili;
- gli edifici esistenti possono aver già sopportato in passato terremoti (più o meno violenti) o altre azioni accidentali, i cui effetti possono essere più o meno manifesti;
- gli edifici esistenti presentano situazioni concrete che possono essere le più diverse (e a volte imprevedibili).

Vista la quantità di documentazione disponibile e le limitate indagini della struttura, si è ritenuto di aver conseguito un livello di conoscenza LC1, ovvero una conoscenza "limitata" a cui corrisponde un fattore di confidenza FC = 1,35.

Sulla base della documentazione disponibile ed in funzione degli stanziamenti disponibili per l'esecuzione della campagna di indagini e di rilievi condotti in situ, si ricade nel livello di conoscenza accurata LC1 secondo quanto previsto dal D.M. 17/01/2018 e dalla Circolare n. 7/19.

I dati richiesti per raggiungere il livello di conoscenza LC1 sono definiti in Tab.C8.5.IV, estratta dalla Circolare n. 7/19.

Per l'edificio in oggetto, caratterizzato da una struttura portante muratura in mattoni pieni, per la stima dei livelli di conoscenza e dei fattori di confidenza, verranno considerate le indicazioni, previste dal D.M. 17/01/2018 e dalla Circolare n. 7/19, relative alle costruzioni esistenti in muratura.

Di seguito, con riferimento alle specifiche contenute al § 8.5 delle NTC, è riportata una guida alla stima dei Fattori di Confidenza (FC), definiti con riferimento ai tre Livelli di Conoscenza (LC) crescenti, secondo quanto segue.

LC1: si intende raggiunto quando siano stati effettuati, come minimo, l'analisi storico-critica commisurata al livello considerato, con riferimento al § C8.5.1, il rilievo geometrico completo e indagini limitate sui dettagli costruttivi, con riferimento al § C8.5.2, prove limitate sulle caratteristiche meccaniche dei materiali, con riferimento al § C8.5.3; il corrispondente fattore di confidenza è FC=1,35 (nel caso di costruzioni di acciaio, se il livello di conoscenza non è LC2 solo a causa di una non estesa conoscenza sulle proprietà dei materiali, il fattore di confidenza può essere ridotto, giustificandolo con opportune considerazioni anche sulla base dell'epoca di costruzione);

LC2: si intende raggiunto quando siano stati effettuati, come minimo, l'analisi storico-critica commisurata al livello considerato, con riferimento al § C8.5.1, il rilievo geometrico completo e *indagini estese* sui dettagli costruttivi, con riferimento al § C8.5.2, prove estese sulle caratteristiche meccaniche dei materiali, con riferimento al § C8.5.3; il corrispondente fattore di confidenza è FC=1,2 (nel caso di costruzioni di acciaio, se il livello di conoscenza non è LC3 solo a causa di una non esaustiva conoscenza sulle proprietà dei materiali, il fattore di confidenza può essere ridotto, giustificandolo con opportune considerazioni anche sulla base dell'epoca di costruzione);

LC3: si intende raggiunto quando siano stati effettuati l'analisi storico-critica commisurata al livello considerato, come descritta al § C8.5.1, il rilievo geometrico, completo ed accurato in ogni sua parte, e indagini esaustive sui dettagli costruttivi, come descritto al § C8.5.2, prove esaustive sulle caratteristiche meccaniche dei materiali, come indicato al § C8.5.3; il corrispondente fattore di confidenza è FC=1 (da applicarsi limitatamente ai valori di quei parametri per i quali sono state eseguite le prove e le indagini su citate, mentre per gli altri parametri meccanici il valore di FC è definito coerentemente con le corrispondenti prove limitate o estese eseguite).

Estratto NTC 2018

C8.5.4.1 COSTRUZIONI DI MURATURA

Nel caso in cui la muratura in esame possa essere ricondotta alle tipologie murarie presenti nelle Tabelle C8.5.I e C8.5.II, i valori medi dei parametri meccanici da utilizzare per le verifiche possono essere definiti, con riferimento alla tipologia muraria in considerazione per i diversi livelli di conoscenza, come segue:

- LCI: -Resistenze: i valori minimi degli intervalli riportati in Tabella C8.5.I.
 - Moduli elastici: i valori medi degli intervalli riportati nella tabella suddetta.
- LC2: Resistenze: i valori medi degli intervalli riportati in Tabella C8.5.I
 - -Moduli elastici: i valori medi degli intervalli riportati nella tabella suddetta.
- LC3: -I valori delle resistenze e dei moduli elastici riportati in Tabella C.8.5.1 individuano una distribuzione a-priori che può essere aggiornata sulla base dei risultati delle misure eseguite in sito. Considerato il generico parametro X, una stima dei parametri µ' e d' della distribuzione a-priori può essere dedotta dai valori minimo e massimo in tabella, con le formule seguenti:

$$\mu' = \frac{1}{2} (X_{\min} + X_{\max})$$
[C8.54.1]
$$\sigma' = \frac{1}{2} (X_{\max} - X_{\min})$$
[C8.54.2]

Eseguito un numero n di prove dirette, l'aggiornamento del valore medio può essere effettuato come segue:

$$\mu'' = \frac{n\bar{x} + \kappa \mu'}{n + \kappa}$$
 [C8.54.3]

dove \bar{X} è la media delle n prove dirette e κ è un coefficiente che tiene conto del rapporto tra la dispersione (varianza) della stima effettuata attraverso le prove (combinazione tra incertezza della misurazione sperimentale e dispersione dei parametri meccanici nell'ambito dell'edificio che si sta analizzando) e la varianza σ^2 della distribuzione a-priori.

Estratto NTC 2018

II. Materiali esistenti

Dalle indagini svolte sulla struttura oggetto d'intervento le pareti portanti risultano essere costituite da muratura di mattoni pieni e malta di calce.

Si riportano nel seguito le caratteristiche meccaniche della muratura indicati nella Tabella C8A.2.1 della Circ. n. 617/09.

Tipologia di muratura	f (N/mm²) min-max	τ ₀ (N/mm²) min-max	f _{V0} (N/mm²)	E (N/mm²) min-max	G (N/mm²) min-max	w (kN/m³)
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	1,0-2,0	0,018-0,032	-	690-1050	230-350	19
Muratura a conci sbozzati, con paramenti di spessore disomogeneo (*)	2,0	0,035-0,051	-	1020-1440	340-480	20
Muratura in pietre a spacco con buona tessitura	2,6-3,8	0,056-0,074		1500-1980	500-660	21
Muratura irregolare di pietra tenera (tufo, calcarenite, ecc.,)	1,4-2,2	0,028-0,042	-	900-1260	300-420	. 13 ÷ 16(**
Muratura a conci regolari di pietra tenera (tufo, calcarenite, ecc.,) (**)	2,0-3,2	0,04-0,08	0,10-0,19	1200-1620	400-500	
Muratura a blocchi lapidei squadrati	5,8-8,2	0,09-0,12	0,18-0,28	2400-3300	800-1100	22
Muratura in mattoni pieni e malta di calce (***)	2,6-4,3	0,05-0,13	0,13-0,27	1200-1800	400-600	18
Muratura in mattoni semipieni con malta cementizia (es,: doppio UNI foratura ≤40%)	5,0-8,0	0,08-0,17	0,20-0,36	3500-5600	875-1400	15
(1)			1			

^(*) Nella muratura a conci sbozzati i valori di resistenza tabellati si possono incrementare se si riscontra la sistematica presenza di zeppe profonde in pietra che migliorano i contatti e aumentano l'ammorsamento tra gli elementi lapidei; in assenza di valutazioni più precise, si utilizzi un coefficiente pari a 1,2.

Valori di riferimento dei parametri meccanici della Circ. n. 7/19.

Si riportano nel seguito i valori delle proprietà meccaniche:

- Muratura in mattoni pieni e malta di calce:

Modulo di elasticità normale E = 1500 N/mm2

Modulo di elasticità tangenziale G = 500 N/mm2

Resistenza media a compressione fm = 2.6 N/mm2

Resistenza media a taglio in assenza di compressione fvm0 = 0.13 N/mm2

Peso specifico w = 18 KN/m3

Le indicazioni tecniche per la scelta dei materiali sono riportate ai capitoli 4, 7 e 11 del D.M. 17/01/2018.

^(**) Data la varietà litologica della pietra tenera, il peso specifico è molto variabile ma può essere facilmente stimato con prove dirette. Nel caso di muratura a conci regolari di pietra tenera, in presenza di una caratterizzazione diretta della resistenza a compressione degli elementi costituenti, la resistenza a compressione fpuò essere valutata attraverso le indicazioni del § 11.10 delle NTC.

^(***) Nella muratura a mattoni pieni è opportuno ridurre i valori tabellati nel caso di giunti con spessore superiore a 13 mm; in assenza di valutazioni più precise, si utilizzi un coefficiente riduttivo pari a 0,7 per le resistenze e 0,8 per i moduli elastici.

III. Materiali nuovi

i. Calcestruzzo

Il calcestruzzo adottato è della classe C28/35. Si elencano di seguito le principali caratteristiche del calcestruzzo:

- Calcestruzzo classe C28/35:

Modulo di elasticità normale $E = 32588,1 \text{ N/mm}^2$ Resistenza cilindrica media a compressione $f_{cm} = 37,05 \text{ N/mm}^2$ Resistenza media a trazione $f_{tm} = 2,83 \text{ N/mm}^2$ Peso specifico $w = 25,00 \text{ KN/m}^3$

La resistenza di calcolo cilindrica a compressione del cls a 28 giorni si calcola con la formula 4.1.4 riportata al § 4.1.2.1.1.1:

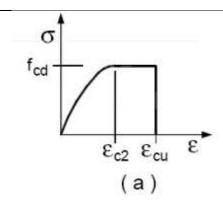
$$f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c} = \frac{0.85 \cdot 29.05}{1.5} = 16.46 \text{ N/mm}^2$$

dove:

 $\alpha_{cc}=0.85$ è il coefficiente riduttivo per le resistenze di lunga durata; $\gamma_c=1.5$ è il coefficiente parziale di sicurezza relativo al calcestruzzo.

La resistenza caratteristica a trazione semplice (§ 11.2.10.2) risulta:

$$f_{ctk} = 0.7 \cdot f_{ctm} = 1.98 \ ^{N}/_{mm^{2}}$$


La resistenza di calcolo a trazione semplice (formula 4.1.5 - §4.1.2.1.1.2):

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c} = \frac{1,98}{1,5} = 1,32 \text{ N/mm}^2$$

In accordo con il § 11.2.10.4 del DM' 18, per il coefficiente di Poisson si può adottare, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0,2 (calcestruzzo non fessurato).

$$\nu = 0 \div 0.2$$

Il legame costitutivo tensione - deformazione considerato è quello a parabola - rettangolo riportato nella figura sottostante

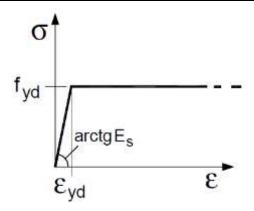
Legame costitutivo considerato per il calcestruzzo – Figura 4.1.1.a D.M. 17/01/2018

ii. Acciaio per barre di armatura

Per le armature delle opere in c.a. si utilizza acciaio del tipo B450 C.

- Acciaio tipo B450 C controllato:

 $\begin{tabular}{ll} Modulo di elasticità & E_s = 200000 \ N/mm^2 \\ Tensione di snervamento & f_{yk} = 450 \ N/mm^2 \\ Allungamento percentuale dopo rottura & A_t = 7,5 \% \\ \end{tabular}$


La resistenza di calcolo, fyd, si calcola con la formula 4.1.6 riportata al § 4.1.2.1.1.3:

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{450}{1,15} = 391,3 \text{ N/mm}^2$$

dove:

 $\gamma_s = 1,15$ è il coefficiente parziale di sicurezza relativo all'acciaio.

Il legame costitutivo tensione - deformazione considerato è quello elastico - perfettamente plastico riportato nella figura sottostante

Modello σ-ε per l'acciaio - Figura 4.1.2 b D.M. 17/01/2018

iii. Acciaio per carpenterie metalliche

L'acciaio adottato per la realizzazione del consolidamento del secondo solaio e di quello di sottotetto è tipo S275.

Si elencano di seguito le principali caratteristiche dell'acciaio:

Description of the Control of the Co		Acciai da carpenteria	nic inpuisation.
Proprietà	S235	S275	S355
f _{yk} (N/mm²)	235	275	355
f_{tk} (N/mm ²)	360	430	510
f_{tk}/f_{yk}	1,53	1,56	1,436
ϵ_{t}	24-28	21-24	20-22
E (N/mm²)	210000	210000	210000

caratteristiche meccaniche acciaio da carpenteria

i. Intonaco armato con malta fibrata M15 e rete G-MESH 400

Malta Strutturale Fibrata M15

Caratteristiche essenziali	Prestazione	Specifica Tecnica armonizzata		
Resistenza a compressione	M15	*		
Resistenza a taglio iniziale (valore tabulato)	0,15 N/mm ²	EN 998-2:2016		
Resistenza a flessione	NPD			
Contenuto di cloruri	< 0,1% Cl			
Reazione al fuoco	Classe A1	Decisione della commissione 2000/605/EC		
Assorbimento d'acqua	W0	*		
Permeabilità al vapore acqueo (μ)	15/35			
Conducibilità termica (λ) (valore tabulato)	0,89 W/mK			
Durabilità al gelo/disgelo	NPD	EN 998-2:2016		
Sostanze pericolose	Vedi scheda di sicurezza			

Massa Volumica	circa 1800 Kg/m ³			
Granulometria inerte	0 - 2 mm			
Tipologia fibre	6 mm polimeriche			
Consistenza dell'impasto	plastica (a macchina) – tissotropica (a mano)			
Acqua di impasto per ogni sacco da 25 kg	ca. 3 – 3,5 litri			
Tempo di applicazione (a 20°C)	45 minuti			
Temperatura di applicazione	da+5 °C a+35 °C			
Spessore minimo di applicazione	5 mm			
Spessore massimo di applicazione	20 mm			
Resistenza a compressione a 28 gg. (EN 998 – 1, EN 998 – 2)	CS IV, M15 (> 15 N/mm ² - 150 kg/cm ²)			
Modulo Elastico a 28 gg. (EN 13412)	≥ 15 GPa			
Resistenza a flessione (EN 998-2)	NPD			
Conducibilità termica (EN 1745)	(λ _{10,dry}) 0,83 W/mK (valore tabulato)			
Resistenza a taglio iniziale (EN 998 – 2)	0,15 N/mm² (valore tabulato)			
Reazione al fuoco (EN 13501 – 1)	Euroclasse A1			
Contenuto di cloruri	< 0,1%			
Consumo	 intonaco strutturale: ca. 16,7 kg/m² per cm di spessore - malta da allettamento: varía con il tipo di muratura. 			
Confezione	sacco da 25 kg in bancali in legno a perdere da 60 sacchi.			
Condizioni di Conservazione (D.M. 10 Maggio 2004)	in imballi originali, in luogo coperto, fresco, asciutto ed in assenza di ventilazione			
Durata (D.M. 10 Maggio 2004)	massimo dodici (12) mesi dalla data di confezionamento			
Scheda di Sicurezza	richiedere all'Assistenza Tecnica Ruregold			
Marcatura CE	UNI EN 998 – 1/2			

Rete preformata in fibra di vetro G-MESH 400

Dott. Ing. SILVIO CARINI

Relazione sui materiali

Proprietà costituenti della rete in GFRP	Fibra di vetro impregnata con resina epossidica	
Peso della rete in GFRP	490 g/m²	
Carico della singola barra in trama	5 kN	
Carico della singola barra in ordito	5 kN	
Carico massimo in trama della rete	60 kN/m	
Carico massimo in ordito della rete	60 kN/m	
Modulo Elastico a trazione della rete	> 25 GPa	
Allungamento a rottura della rete	1.50 %	
Dimensione delle maglie della rete	80 x 80 mm	
Confezione	Rotolo da 40 m² (lunghezza 20 m e altezza 2 m)	
Temperatura di applicazione	Da +5°C sino a +35°C	

Piacenza, lì 19/02/2024

IL TECNICO

Dott. Ing. Silvio Carini